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ABSTRACT

Ultrasonic and electrostatic levitation techniques have allowed the experimental

investigation of the nonlinear oscillatory dynamics of free droplets with diameter between

0.1 and 0.4 cm. The measurement of the resonance frequencies of the fust three normal

modes of large amplitude shape oscillations in an electric field of varying magnitude has

been carried out with and without surface charges for weakly conducting liquids in air.

These oscillations of nonspherical levitated drops have been driven by either modulating

the ultrasonic field or by using a time-vm-ying electric field, and the free decay from the

oscillatory state has been recorded. A decrease in the resonance frequency of the driven

fundamental quadruple mode has been measured for increasing oblate  deformation in the

absence of an electric field. Similarly, a decrease in this frequency has also been found for

increasing DC electric field magnitude. A soft nonlinearity exists in the amplitude

dependence of the resonant mode frequencies for freely decaying as well as ultrasonically

and electrically driven uncharged drops. This decrease in resonance frequency is

accentuated by the presence of free surface charge on the drc)p.  Subharmonic resonance

excitation has been observed for drops in a time-varying electric field, and hysteresis exists

for resonant modes driven to large amplitude. Mode coupling from lower-order resonances

to higher-order modes has been found to be very weak, even for fairly large amplitude

shape oscillations. Most of these results are in general agreement with predictions from

recent analytical and numerical investigations.
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1. INTRODUCTION

The dynamics of isolated and freely suspended drops are of fundamental interest

because of their inherent nonlinear characteristics, but also because of the practicrd  need for

an understanding of the governing physical mechanisms in natural and industrial processes

involving disperse two-phase systems. In particular, evidence has been obtained indicating

that the induction of drop shape oscillations can lead to an enhancement of mass and heat

transfer. This is relevant to applications in industrial processes involving solvent extraction

and direct contact heat exchangersl-3  . At the same time, progress in levitation technology

has introduced the possibility of investigating the properties of materials in the liquid state

under conditions only obtainable for levitated samples 4-6. In this context, the accuracy of

measurements of the surface properties of acoustically, electrostatically, or

electromagnetically levitated melts depends on our knowledge of the often nonlinear

dynamics of the droplets. An understanding of the levitation field effects on the drop

response is also required to interpret the associated experimental observations. Although

the small amplitude shape  oscillations of totally free and spherical liquid drops are well

understood, they are very seldom applicable to actual Earth-based physical systems. The

need for a theoretical understanding of large amplitude oscillations of deformed drops thus

provides the motivation for the rigorous and detailed measurement of their characteristics.

The large amplitude shape oscillations of isolated free drops have been extensively

examined in recent years, although the emphasis of the theoretical work has been mainly

on inviscid or weakly viscous liquids. A great deal of insight on the dynamics of free

droplets has been gained in the initial oscillatory phase 7 as well as in the asymptotic driven

stead y state and free decay stages7- 13. Thus, over the past two decade, an impressive array

of investigations using both analytical and numerical techniques has addressed the problem

of axisymmetric  large amplitude oscillations of inviscid drops, and partial corroboration

with experimental findings has been obtained 14-15 . More recently,  however,  nonlinear

treatments of viscous drop oscillations have been proposed 16’17  , and their predictions

have been favorably compared with experimental results based cm the observations of

drops detached from a nozzle and freely falling under the influence of gravity and

aerodynamic drag.



From the available evidence to date, the salient and widdy  accepted nonlinear

characteristic appears to be the decrease in resonance frequency of the fundamental shape

oscillation mode with increasing oscillation amplitude. In this case, both analytical and

numerical methods predict a quadratic dependence of the frequency on the oscillation

amplitude. Experimental results obtained using acoustically levitated droplets in an

immiscible host 14 as well as data from free droplets falling in air 15 are in general

agreement with these theoretical predictions. Another finding is that the inclusion of

significant viscosity in the numerical simulations of 1 arge amplitude free decaying drop

dynamics reduces the imbalance between the time durations of the oblate and prolate

corttlgurahons for the fundamental mode, and it prevents resonant mode coupling predicted

by inviscid theoretical treatments, Numerical tnodelling has also suggested that the initial

configuration of the droplet influences its subsequent dynamical behavior in the free decay

phase 16.

The work described in this paper deals with the experimental study of small and

large amplitude shape oscillations of single low-viscosity drops acoustically levitated in air

and in the presence of a constant or time-varying electric field. Although some results

based on low gravity experiments carried out in space will be discussed, the bulk of the

discussion concerns free drops levitated on Earth. The shape altering capabilities associated

with combined acoustic and electrostatic levitation must therefore be taken into account

when a comparison is made between theoretical predictions and experimental findings.

This subtle field-drop interaction is the primary motivation for this investigation, A parallel

experimental study of the oscillations of bubbles and drops immersed in a liquid has also

been carried out concurrently, and the results are reported elsewhere 18.

Published theoretical treatments have addressed the equilibrium shape and stability

of charged and uncharged drops in an electic  field. Son le of the earlier analytical work was

performed by Taylor 19 and Brazier-Smith et al. 20 by assuming a spheroidal shape for the

drop. The result was a reasonably accurate evaluation of the equilibriutn shape and of the

natural resonance frequencies. Numerical computations have also been carried out by

Miksis 21, Adornato and Brown 22, Basaran  and Striven 23, and Pelekasis  and

Tsarnopoulos  24 for the equilibrium shape. ~’samopoulos  and Brown 25, Tsamopoulos,

Akylas, and Brown 26, Natarajan and Brown 27, Feng and BeCard 28 , and Kang 29, have

theoretically studied the effects of electric fields and charges on shape oscillations, the

resonant modes coupling process, and the break-up of charged drops in electric fields.
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More recently, Feng and Leal so have formulated a numerical code to investigate the static

shape and nonlinear oscillations of drops in both static and time-periodic electric fields.

It appears that a substantial theoretical foundation for the understanding of the

dynamics of charged and uncharged conducting drop in electric fields has been laid. In this

paper, we wish to describe experimental results which can be compared with some of the

theoretical predictions advanced in the publications mentioned above.

The physical system of interest is a free, single-phase liquid droplet of low

viscosity surrounded by a gaseous medium at rest. The drop can carry a free surface

electrical charge with magnitude varying between zero and the Raylcigh  limit, and it can be

conducting or insulating. The primary scientific interest is in the dynamic response of the

drop to an excitation by time-varying ultrasonic and/or electric s~ess fields:  steady-state

driven as well as free decaying shape oscillations are to be examined to characterize the

resonant response. The drop will therefore be under the influence of both acoustic radiation

pressure and electrical forces. In the Earth’s gravitational field, the initial equilibrium shape

of a levitated drop will be primarily determined by its surface tension and by the ultrasonic

field intensity in the absence of an electric field. The static and dynamic effects of the

electric field will thus be quantified relative to the equilibrium oblate shaped drop

determined by the ultrasonic stress distribution over the drop surface. This reference state

can also be experimentally examined by setting the electric field to zero.

The following sections of the paper will deal first with a discussion of the

experimental approach. Results of the measurement of the equilibrium shape of levitated

drops as a function of the absolute and relative magnitude of the electric and ultrasonic

fields will be reported next to show how the geometry of a levitated drop can be

continuously controlled. The dependence of the resonance frequency of the fundamental (or

quadrupolar) mode of shape oscillation on the static deformation from the perfect spherical

geometry in the absence of an electric field will follow. “Jle effect of a static electric field on

the resonance frequencies of shape oscillations of charged and uncharged drops has also

been measured, and the findings will be described , and finally, the outcome of a study of

the dynamic response of levitated drops to both ultrasonic and electric fields  drive will be

presented to show nonlinear characteristics such as subharmonic excitation, soft

nonlinearity in the resonance frequencies, and mode coupling.
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2. EXPERIMENTAL APPROACH

2.1 Levitation Apparatus

The ‘single-axis’ ultrasonic levitator has been previously used for the investigation

of the physics of free droplets on Earth as well as in low gravity 4’31-3 5. Similarly,

previous use of the electrostatic levitator has allowed the experimental investigation of the

statics and dynamics of levitated charged drops 36-38  having diameters in the sub-millimeter

to millimeter range. In this particular contribution, we combine the two methods to

investigate the effects of electric field stresses on the surface of ultrasonically levitated

drops carrying an electric charge of variuble  magnitude in the full range of drop stability

between the Taylor (high field intensity, no surface charge) and Rayleigh limits (maximum

surface charge in constant field). The current approach allows the levitation of uncharged

drops while a previous electrostatic-acoustic hybrid levitation scheme was limited to the

study of acoustically rotated and oscillated charged drops 38.

Figure 1 shows a schematic representation of the experimental apparatus. A drop

is depicted as being levitated between the reflector and the radiating plate of the ultrasonic

driver. The outer surface of the latter is grounded, while the reflector is connected to a high

voltage, low current source effective from DC to about 1 k.Hz. A function generator and

RF amplifier provide the driving signal for the ultrasonic levitator, while the high voltage

amplifier and a second function generator control the electric field magnitude and

frequency. These two systems can each control drop levitation and shape modulation

independently or they can be used in a complementary mode. In the experiments described

in this paper the sample was primarily ultrasonically levitated, and the electric field was

used either to modulate or to control the static drop shape.

The voltage between the reflector and radiating plate, VE, is a combination of a DC

and of a low frequency sinusoidal signal:

v~ = vo~ + Ve Cos(ae?) , (1)

where VOE is a DC voltage used for the electrostatic levitation of a charged drop, and Ve and

co. are the amplitude and frequency of the AC component drive. of the electric field

respectively. This time-varying component induces both a stafic distortion as well as

oscillatory shape changes when 2(o~ (co~ for the case of sub-harmonic excitation) is close
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to the value of one of the resonant shape mode frequencies (Fe.ng and Beard, 1991 a)~. The

electric field oriented parallel to the gravity vector, and the levitated drop is elongated along

the direction of the electric field. In general, the electric force can be expressed by

Fe = peE
1 2- [[)1-ld&

–5E VE+-V - -  — E2  ,
2 dp ~

(2)

where the first term is usual Coulomb force on a free charge pe, the second term represents

the force on an inhomogeneous  dielectric in a field of magnitude E, and the last term

describes the force on a dielectric in a non-uniform field. The electric force components

involved in altering the drop shape both depend on the square of the electric field

magnitude. For a field described by expression (1) they vary at both the frequencies me

and 2c0e . When VOE =0, the drop shape is thus modulated by the time-varying electric

field at the frequency 2c0..

For an axisymmetnc  and inviscid spherical charged drop, Rayleigh’s  result39 for

the normal modes is

1(1-1)
a;=—

[
0(1+ 2) ––+—

p R3 1(4z) eoR3 ‘
(3)

where R is the drop radius, p its density, o its surface tension, and ~ the permittivity of the

surrounding medium (air in this case). The resonance frequencies are independent of the

second index k which reflects non-spherically symmetric contributions not accounted for

by Rayleigh’s theory. As the experimental evidence presented below will show, this

degeneracy is removed in actual levitated drops due to the non-spherical initial drop shape.

For a more complete three-dimensional treatment, the drop shape is usually described in

terms of the spherical harmonics (Landau and Lifshitz, 1959)40 given by

Yf~(0,$)=Pf~(cosf3 )ei@ . F~or each 1 there exists one axisymmetric oscillation mode and 1

distincf  three-dimensional modes. Thus, for the fundamental 1=2 mode, there are three

distinct modes which are degenerate for the case of a spherical drc~p. This degeneracy is

removed when the static equilibrium drop shape becomes non- spherical, and, in principle,

three distinct resonance frequencies and oscillatory motion types can be measured. The

axisymmetric mode (also called the “pulsation” mode) is described by the zonal harmonics

(k=O); the other three-dimensional modes, sometimes called the “transverse-shear” (k=l)
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and “toroidal” (k=2) modes, are described by the tesseral  ancl sectorial  harmonics

respectively.

In addition to the direct excitation from the time-varying electric field, drop shape

oscillations can also be driven by the modulation of the acoustic radiation force. In this

case, the voltage accross  the ultrasonic transducer, VW , is given by

Vw = Vao[l + A’fcos(amf)]cos(comt), (4)

VXO is the amplitude of the carrier voltage at the frequency (I)W = 2X faC for the acoustic

standing wave (f= =24.6 kHz), M is the modulation index for the amplitude modulation of

the acoustic force at the frequency ~. Because the acoustic radiation force is proportional
to the square of the acoustic pressure, this force is therefore proportional to V2~C , and this

amplitude modulation results in a time-vrwying acoustic force at both the frequencies w as

well as 203.. This translates into a periodic  j7atrening  of the drop by the acoustic force, an

action opposite to the periodic elongation of a liquid sample submitted to a time-varying

electric field.

2.2 The monitoring and imaging of drop oscillations

The dynamic response of the levitated drc)p to either steady-state or transient

excitation is recorded in two ways: the shadow of a laser-illuminatecl  drop is monitored by

a photodetector located behind a vertical slit, and the image of the backlit drop is recorded

by a video camera at 30 frames/see or at high rates (2,000 or 4,000 frames/see). The

temporal information is redundant, but the video image recording method  allows complete

shape analysis for uxisyrnrnetr-ic  oscillations, ‘he photodetector output can be absolutely

calibrated with respect to the real drop shape by comparing with the simultaneous y strobcd

illumination of the drop under steady-state oscillation drive. The strobing frequency is

slaved to the oscillation drive frequency, but the strobe input signal phase can be vaned

with respect to the low frequency oscillation drive signal. This phase is varied until an

image for the maximum oscillation ampIitude  is obtained; this can be used for the absolute

calibration by comparing the photodetector signal amplitude and the measured deformation

on the drop image. The sequence of shapes characteristic of large amplitude oscillations in

the fundamental 1=2, k=o mode shown in figure 2 has been obtained by video recording

the drop shape under strobed illumination.
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For the case of ~&nrnetric oscillations of a free drop, the usual expansion into the

Legendre polynomials is used. The shape of the drop, described by R(6,t) is

[ 1R(f),t) = & 1 + ~Re[cl(t)P1(cos  O)] , (5)
1=2

where RO is the radius of the sphere of the same volume equivalent to an undeformed drop,

PI(COS 0) is the Legendre  polynomial of degree 1, and Cf(r) are the coefficients describing

the deformed drop shape in terms of the standard I.egendre  shapes. Implementing a

method similar to that used by Becker et al. (199 1)1s, we digitize the contour of the

deformed shapes from the high-speed video images recorded during drop oscillations, and

fit the Legendre polynomials to the experimental edge coordinates. Using this method we

can obtain the time series for each cl(t) for driven and freely decaying shape oscillations.

For the data descrikd  in this paper, we have limited ourselves to 1*=6. A video frame

digitally analyzed is not greater than 320x 240 pixels and up to 256 levels of gray.

At large amplitude oscillations and fcm non-spherical drops, non-axisymmetric

normal modes couple to the desired axisymrnetric oscillations, and this approach is no

longer satisfactory for the analysis of the shape. The onset of non- axisymmemc motion is

immediately reflected in a non-constant value for the “volume” that is calculated from the

digitized image under the assumption of axial symmetry.

3.

3.1

EXPERIMENTAL RESULTS

Static Shape of Ultrasonically Levitated Drops in an Electric Field

The static shape of ultrasonically levitated droplets in air and in the Earth

gravitational field has been theoretically 41s4Z and experimentally studied in the past 43’~”a.

The electrohydrodynamic deformation of drops in weakly conducting liquids has also been

recently determined to essentially follow Taylor’s leaky dielectric theory 45’46 . The shape of

drops in a static uniform electric field for both conducting and insulating liquids has been

investigated by O’Konski et al. (1953) 4TJ48  and Sample et al.(1970)49.  In this study,

however, we experimentally investigate the superposition of ultrasonic and electric stresses

and their effects on the shape of levitated charged and uncharged drops in air. In temls of

the equilibrium shape of a levitated drop, the oblate  deformation caused by the ultrasonic
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radiation stresses can be “balanced” out by a prolate-biased drop shaping due to an electric

field. If both the ultrasonic and electric fields are axisyrnmetric, a resulting near-spherical

shape can be experimentally obtained with the appropriate combination of acoustic pressure

and electrode voltage.

A related problem has been investigated by Pruppacher  et also  (1982), and deals

with the shape of aerodynamically supported droplets in a vertical wind tunnel and in the

presence of a vertically directed electric field. The size of the droplets they investigated

ranged between 0.05 and 0.3 cm equivalent spherical diameter (the diameter of the

equivalent spherical drop of the same volume as the distorted suspended drop). In this

case, the drop shape under terminal velocity conditions is determined by the combination

of hydrodynamic and electric forces. In the absence of an electric field, the equilibrium

shape of these drops is oblate, but inherently asymmetric: their cross section is flattened on

the upstream side (lower hemisphere) and curved on the downstream side (upper

hemisphere) due to the asymmetrical hydrodynamic stress distribution. For relatively

larger droplet sizes (equivalent spherical diameter greater than 0.4 cm), the equilibrium

shape of ultrasonically levitated drops is almost the opposite: The upper surface is flattened

and the lower hemisphere is more highly cuwed.  In roughly the same drop size range

(0.05 to 0.3 cm equivalent spherical diameter), however, ultrasonically levitated droplets

are nearly symmetrical with respect to the equator. On the other hand, the effect of the

vertical electric field on the equilibrium drop shape, is qualitatively similar for both

aerodynamically and ultrasonically levitated drops: electrical forces act opposite to

hydrodynamic and ultrasonic forces, and they can be used to obtain a more spherical drop

shape. More recent analytical results have been produced by Coquillat and Chauzy  51

(1993) for the combined effect of aerodynamic and electrical forces, and they have been

favorably correlated with wind tunnel experimental results.

Figure 3 shows the results of measurements of the equilibrium geometrical aspect

ratio a/b = R(O=ti2)  / R(O=O) of a 1.85 mm diameter ultrasonically levitated uncharged

oblate  water-glycerol solution drop as a function of the magnitude of the static electric field.

The upper limit of the electric field intensity was determined by breakdown in the air gap

separating the ultrasonic driver and the reflector. The three data sets correspond to three

different acoustic pressure levels, and the drop never attains a spherical equilibrium shape

even for the highest allowable electric field intensity. Spherical and prolate static drop

shapes can be obtained for larger volumes as shown by figure 4 which reproduces a series

of photographs of a 0.32 cm diameter water-glycerol drop fclr constant acoustic pressure
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level but increasing electric field intensity. The gradual change from the oblate  shape (a-c),

to spherical (d), to symmetric prolate (e,f’), and finally to asymmetric prolate (g, h) can be

clearly observed in this series of photographs. In this case, the drop center of mass remains

at a constant position because the drop does not carry any significant net surface charge.

The loss of symmetry with respect to the drop equator has been theoretically predicted by

Feng and Leal 30 (1995) for unchmged drops and high electric field intensity. These

measurements have been obtained with droplets displaying ramforrdy  oriented  residual

rotation with angular velocity on the order of 1 rps. Such a rotation velocity would induce

shape distortions of less than 0,590 for the material parameter range under consideration.

3.2 Shape oscillations Driven by Modulated Ultrasonic Radia(ion  Force

32.1 Fundamental Resonance Frequency Variation with Static Drop Shape

The measurement of the fundamental mode resonant frequency of drops levitated

in an immiscible liquid host to a modulation in the acoustic radiation force has been used in

the past to yield results consistent with the linear theory 52,53. The results of the same

Earth-based measurements using drops levitated in a gaseous host medium have been

difficult to interpret because of effects of the static distortion from the spherical shape, and

of drop rotation. Not only has a shift in the resonance frequency from the value predicted

by linear theory been documented SA*SS, but a split of the resonance frequency of driven

oscillations into three characteristic values has also been found 4 . This shift and splitting of

the fundamental resonance frequency has also been measured for rotating drops levitated

in an immiscible liquid host 56, and it has been theoretically explained by analyzing the role

of the Conolis force 57. It appears from the available evidence that a rigorous measurement

of the resonance frequency in the small-amplitude range of shape oscillations must account

for the static shape, the field-incluced  restoring forces, as well as the rotational state of the

drop. We report here the results of the measurement of the fundamental resonance mode

frequency of small-amplitude driven shape oscillations for non-rotating drops as a function

of the oblate  deformation.

The control of unwanted drop rotation in a single-axis ultrasonic levitator can be

achieved by using a variety of empirical methods which vary according to the specific

levitator configuration. There is no agreed-upon theoretical account for the generation of

this torque, but existing evidence points to the contributing role of acoustically-induced
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streaming 58. In the particular case reported here, a low gravity environment appeared to

eliminate the unwanted drop rotation by allowing a substantial reduction of the acoustic

intensity required for drop levitation. The measurements were carried out in a NASA KC-

135 airplane flying parabolic trajectories and providing 15 to 20 second periods of effective

reduced gravity (down to about  0.05 to 0.01 g, g being the Earth gravitational acceleration

at sea level) 59. Many measurements have been carried out over a period  of 8 years, but the

results presented here consist of five sets of data for fwe different drops obtained during

four different series of airplane flight experiments. The selection of these five sets was

based on the following criteria: The oscillations were axisyrnmefric  (i.e. 1=2, k=O in

equation (3)), the rate of drop rotation was less than 0.1 rps, the amplitude of translational

instability was less than 10% of the drop effective equilibrium diameter, and the reference

frequency for a “spherical” drop shape (0.99  <a/b<l.  1) was obtained for each

measurement of the frequency at a different ah parameter (where MI is the ratio Of the

horizontal to vertical dimensions).

The measurement of the resonance frequency was carried out in the following

manner. A drop was levitated during level flight (effective gravity level of about 1 g) and

the ultrasonic transducer power was adjusted to allow the levitation of the drop in the

climbing and recovery phases of the parabolic trajectory (up to 1.8 g). At this stage, the

drop is drastically flattened because of the high sound intensity. During the low gravity

period, the transducer power was reduced to a minimum level necessary to position the

drop and to adjust its shape to near-spherical . The driven resonance frequency was then

measured by maximizing the amplitude of the oscillatory response of the drop to a varying

modulation of the acoustic force. The amplitude of the shape oscillations was always kept

at values below 10% of the vertical drop dimension (less than 10%J of the effective drop

radius). The drop response was visually monitored and the mode shape (1=2,  k=O) was

identified using the magnified drop image from a videcj camera equipped with a

microscope lens. The modulation frequency at maximum response was measured to

within 0.1 Hz for the low viscosity (1 to 3 cP) liquids and drop sizes used (0.3 to 0.4 cm

diameter). The aspect ratio of the oblate shaped drops was measured by digitizing the video

recorded images which were absolutely calibrated by imaging a ball hewing of roughly  the

same size as the drops. A reference measurement of the resonance frequency for a near-

spherical drop was always taken in the high-to-low gravity cycle right after the one during

which a measurement at higher deformation had been recorded. The relative shift in the

resonance frequency for a specific aspect ratio (or deformed drop shape) is the ratio of the

values of these two consecutive measurements. The reference value f20 is thus an
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experirnentaf  value, not one calculated from the surface  tension, density, and drop size, and

each data point consists, therefore, of two consecutive measurements of the resonance

frequency. The short elapsed time between the two measurements minimizes the

uncertainty associatwl  with a change in drop size due to evaporation.

The results are plotted in figure 5 where the relative shift in the resonance

frequency f~fzcr is shown as a function of the deformation (a/b). A very slow decrease in

the resonance frequency is obtained for initially low oblate defomlation, and, within the

experimental uncertainty, higher values of ti (lalger  deviation from the spherical

geometry) always leads to a lowering of the measured resonance frequency. These results

are in qualitative agreement with those obtained with laboratory-based levitators, but a close

quantitative match was ncn obtained, except at very large values of a/b. The shift in the

resonance frequency measured in 1 g was based on a calculated reference value obtained

from equation (2) for uncharged drops (Q=O). This is because undistorted levitated drops

can only be obtained in 1 g for very small sample radius (R<O.05 cm). Such small size

droplets are heavily damped, and a driven resonance frequency is difficult to measure

precisely. The current results are also in general agreement with previously obtained 1 g

and microgravity data from other investigators 55.

322  Funabmental  Resonance Frequency Variation with Static Elecfric  Field

The shift in the fundamental resonance frequency of ultrascmically  driven shape

oscillations of levitated drops with an oblate  equilibrium shape has been measured as a

function of the magnitude of a static (DC) electric field. Both charged and uncharged drops

have been investigated. These measurements have been obtained in an Earth-based

laboratory, and they are more difficult to interpret because of the influence of both the

ultrasonic and electric fields on the drop dynamics. In order to minimize the coupling

between these two force fields, we have carried out measurements for very low amplitude

acoustically-driven shape oscillation with a constant ultr asonic levitation force as a function

of the magnitude of the DC electric field, and for increasing surface charge values below

the Rayleigh limit. Measurements of the absolute value of the surface charge were not

carried out since we were mainly interested in the relative shift in the resonance frequencies

of normal modes as a function of both elecrnc  field and charge.
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The following procedure was adopted for the quantitative. determination of the

variation of the driven resonance frequencies: (1) A drop was deployed and levitated

ultrasonically, (2) The drop size and shape were measured using its digitized video image,

(3) The driven resonance frequency for the axisymmetric  fundamental mode (1=2,  k=O)

and zero electric field was first measured by maximizing the signal from the photodetector,

, (4) The same measurement was then repeated for at most five increasingly higher static E

field values, (5) A final measurement was made for E=O. Each resonance frequency

measurement took about 10 seconds, and the whole set of six to seven data points could

easily be carried out in less than 90 seconds. Ile drop size and shape were again measured

after each series of measurement to ensure that the drop volume change due to evaporation

was small (< 0.5 %) and that the ultrasonic force stayed constant (drop aspect ratio Nb

change less than 0.5%). Only the data sets satisfying these conditions were recorded. The

relative frequency was plotted as a function of a normalized electric field (E=E* (&oR /

cr)l~ ). The liquid surface tension o was measured by a pendant drop technique, and the

viscosity was determined by a Cannon-Fenske type apparatus. The drop size ranged

between 0.2 and 0.3 cm cliameter,  and the liquids used were distilled water and a low-

viscosity aqueous solution of glycerol (3.25 CP dynamic viscosity).

Figure 6 reproduces a representative data set for uncharged drops and for drops

carrying two different charges. Ile charges Q1 and Q2 have been induced on the drops by

imposing voltages of -2 and -3 kV respectively to the electrode connected to the drop

injection needle prior to sample deployment and levitation. The. maximum estimated

experimental uncertainty in the resonance frequency measurement is 0.5 % (or 0.3 to 0.4

Hz absolute uncertainty). Typical frequencies rang,ed between 60 and 80 Hz. The

continuous curves shown on the graph are third order polynomial least-square fits through

two sets of data. The results show a drastic decrease in the driven fundamental resonance

frequency for an increasing static electric field intensity. This decrease is even more

accentuated by the presence of free surface charge on the drop. “l’his is in qualitative

agreement with available analytical and numerical predictions 28~0.

A strict comparison with existing thec)ries is not possible, however, because the

shape of the levitated drop does not remain ccmstant  as the magnitude of electric field is

increased. The initially oblate,  ultrasonically levitated drop is deformed by the increasing

static field which tends to restore it to a more spherical c)r even prolate shape. The change in

resonance frequent y measured in this particular experh  nent thus includes the effects of the
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electric field together with the influence of the equilibrium drop shape on the resonant

oscillations.

3.3 Nonlinear Characteristics of Driven Large Amplitude Drop Shape oscillations

Three-dimensional driven shape oscillation resonant modes have been excited by

using levitated millimeter-size low viscosity droplets and modulated ultrasonic radiation

pressure or an AC electric field. The equilibrium shape of these ultrasonically levitated

drops is oblate with aspect ratio a/b having values  bet~reen  1.2 and 1.3. The characteristics

of the frequency response to these driven excitations are highly sensitive to the drop

viscosity: a change from 1.0 to 3.25 CP in the dynamic viscosity brings about a qualitative

change in the spectrum of the measured three-din tensional resonant modes for the

fundamental /=2 shape oscillations. As we shall desclibe in the following sections, three

separate resonances can be experimentally determined for pure distilled water, and large

amplitude driven oscillations lead to a complicated coupling between these three modes.

For a higher viscosity liquid (water-glycerol solution with 3.25 CP dynamic viscosity), only

two resonances can be observed, and large amplitude driven oscillations can lead to

hysteresis and random coupling. The multiplicity of the modes disappears for Iiquids with

viscosity higher than 10 CP, and a single broad peak is obtained.

Fairly large amplitude shape oscillations for the first few shape oscillation modes

(1=2,3,4)  have been observed when either of the modulation frequency w (see equation

4), or twice the electric field frequency 20. (see equation 1) coincides with the appropriate

resonance frequency. Figure 7 shows photographs of instantaneous drop profiles of

resonant mode oscillations obtained by using strobed  back illumination. The higher mode

number resonant oscillations have been experimentally recorded by levitating 4 mm

diameter droplets and using substantial mc~dulatiorl  of the acoustic radiation force.

Although there exists a multiplicity of distinct three-dimensional oscillatory motions for

each mode number 1, and corresponding to k # O, they cannot be all experimentally driven

with the same ease. In general, for each of the fiist three primary resonances (1=2,3,4), only

a subset of all the three-dimensional modes can be excited at moderate oscillation

amplitude.

Because the multiplicity of three-dimensional, non-axisymrnetric modes quickly

increases with higher primary mode number 1, experimental studies of internal mode

coupling rapidly become quite complicated. In order to reduce the level of complication, we
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have fwst concenbated  on the fundamental resonant rrmde (1=2) in our discussions of the

internal coupling involving three-dimensional modes, of the sub-harmonic mode

excitation, and of the hysteresis effect. Energy exchange between resonant oscillations

with different primary mode numbers will be discussed in the last section dealing with

driven and freely-decaying shape oscillations. All the results described below were

obtained with effective drop diameter between 3 and 4 mm, and all the experimental results

to be described from this point on have involved electrically uncharged drops. All levitated

droplets were undergoing randomly oriented residual rotation with a maximum rotational

velocity of 1 rps. Through a still unknown mechanism, this residual rotation was

substantially reduced, however, as soon as the drops were driven into axisymmetric shape

oscillations.

3.3.1. Non-Axisyrnrnetric  Three-Dimensional Resonant Mode Coupling

Three resonances are experimentally observed for distilled water and low shape

oscillation amplitude: at the lowest frequency (fa2) is a resonance corresponding to

vibration with maximum displacement at the poles and very small motion at the equator

(oscillations in a vertical plane), the middle  resonance (Pz) is associated with maximum

displacement at the equator and limited motion at the poles (oscillations in a horizontal

plane), and finally the highest frequency (fc2) resonance corresponds to the usual oblate-

prolate mode with the amplitude at the poles being twice at large as at the equator. Figure

8 is a schematic representation of the motion associated with each of these three resonant

oscillatory responses. The ratios of the frequencies have the consistently reproducible

values of fC2 / F12 = 1.22 and F2 / fa

2 = 1.4. For low oscillation amplitudes (maximum

surface displacement less than 10% of the equilibrium drop diameter), the same results are

obtained for both methods of shape oscillation excitation (acoustic force modulation and

time-varying electric field).

As the oscillation amplitude is increased by stepping up the acoustical or electrical

force excitation, the first resonant oscillations lose axial symmetry and the initially vertical

plane vibrations are mixed with running waves resulting in ordered three-dimensional

motions. These three-dimensional oscillations can be driven in a wide frequency range

centered on the initial lowest resonance, and as the frequency is furher  increased, they are

abruptly replaced by the oscillations in a horizontal plane. Increasing the frequency even

further excites a mixture of three dimensional modes which can be identified as the pure
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(1=2, k=l),  (1=2, k=2), (1=2, Ml), modes and a combination of the pure modes. These

modes appear to be excittxi  at random, intermittently, and in succession even when the

drive frequency and amplitude are kept constant. A second isolated broad resonance can be

identified at higher frequency, and corresponds to a large amplitude oblate-prolate

oscillation coupled to a running wave.

Figure 9 illustrates the observed drop oscillation geometries for k=o, 1,2 and for the

“running wave” mode observed at the higher frequency. The 1=2, k=~ mode motion is the

usual axisymrnetric  oblate-prolate  oscillation with vertical displacement nearly twice that of

the horizontal amplitude (figure 9a). The 1=2, k= 1 mode is a periodic wobble about the

vertical axis (Figure 9b), while the /=2, k=2 is an oblate-pmlate oscillation about an axis in

the plane normal to the vertical axis of symmetry with no displacement along the vertical

direction 9 (figure 9c). As shown in the photographs in figure 9, the experimentally

observed oscillations are not pure modes, and coupling persists even though the major pure

mode characteristics can be easily identified. For example, the 1=2,  k=2 oscillations

observed in figure 9C still display motion along the vertical axis, indicating residual

coupling with the 1=2, k=o mode. In general, coupling of the k=O oscillations with the k=l

mode occurs at slightly lower frequency than with the k=2 mode, suggesting that the

splitting of the degeneracy by the static shape deformation causes the latter resonance to be

at higher frequency, In the presence of a static electric field, the k=O and k=l driven

resonances appear at lower frec]uency,  while the k=2 mode increases in frequency, in

agreement with theoretical predictions (Feng and Beard, 1991 b). The last, “running wave”

type of oscillation (figure 9d) cannot be readily classified, but one might speculate that it is

a combination rno& of all three types of oscillations having a well defined and significantly

higher resonance frequency.

For a higher viscosity lic~uid (3.25 cP) only two resonances can be identified. At

first approach, the first resonance peak is easily associated with the axisymmetric  k=O

mode, and the second one (found at higher frequency) is a three-dimensional mode which

appears to be a combination of axisymmetric  oblate-prolate oscillations and of a surface

running wave. Upon closer inspection of the first resonance, however, and upon increasing

the shape oscillation amplitude, the three dimensional modes (with k=l and k=2) can be

individually driven at frequencies very close to that of ttle axisymmetric  mode. A definitive

assignment of a resonance frequency to each of the pure. mode canncjt be reliably obtained,

however, due to the substantial overlap of the three modes within a stnall frequency range.

At large enough oscillation amplitude, periodic energy exchange between the axisymmetric
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and non-axisymmernc  modes takes place in the same manner as described in the case of

the lower viscosity liquid. For very large oscillation amplitude a sudden transition can be

induced from seemingly stochastic three-dimensional shape oscillations to axisyrnrnetric,

large arnplitu&, oblate-prolate oscillations as the frequency is swept downward below the

fks~ resonance peak frequency. This hysteresis effect is only observed when the elecrnc

field drive is used, and it will be further discussed in the next section. For a drive

frequency within the second  resonance, however, the stochastic three-dimensional

oscillations never transition to an axisymmetic motion, and the drop is eventually split by

the combination of shape oscillations and rotation induced by the running-wave instability.

Further, coupling between the large amplitude shape oscillation mode and the resonant

translational mode (1= 1) where the restoring force is supplied by the ultrasonic levitation,

can lead to sample instability due to vertical oscillations and eventually to a loss of

levitation. This coupling can arise due to subharmonic interaction when the shape

oscillation frequencies are approximately twice the translational mode resonance frequency.

For liquid with viscosity equal to or greater than approximately 10 cP, only a single

broad resonance corresponding to the (1=2, k=O) oscillations can be found. This

axisymmetric  mode can be maintained to very large oscillation amplitude without coupling

to the three-dimensional modes, but it degenerates into a combination of oscillation and

running wave when the drive frequency is increased above the broad resonance peak

frequency. Viscosity effectively inhibits the energy exchange between the various three-

dimensions.1 oscillations characteristic of the fundamental resonant mode and thus enhances

the large-amplitude axisymmetric mode stability.

3.2.2 Hysteresis of the Fundamental Mode Response to a Time-Varying Electric Field

The outcome of a sweep of the time-varying electric field frequency across the first

resonance of a levitated drop of water-glycerol solution (3,25 CP viscosity) depends on the

sweep direction when the oscillation amplitude becomes large. When the frequency is

increased, the axisymrnemic mode is first excited with growing amplitude. As the

frequency is further increased and the drop displacement amplitude reaches significant

values, the non-axisymmetric resonances are excited, and the. oscillations become three-

dimensional with the stochastic and intermittent appearance of pure as well as combination

modes. This is described in figure 10 where the output of the photodetector monitoring

the drop shape is plotted as a function of the electric field frequency. At fixed E-field
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amplitude, the E-field frequency was caused to sweep from 55 to 85 Hz, then back from

85 to 55 Hz at 0.25 Hdsec. The 1=2 mode was thus sub-harmonically excited. At these

large amplitudes, the resonance curve has leaned so far to the left that it has become triple-

valued, with an unstable branch. Such a saddle-node bifurcation has long been recognized

as a characteristic feature of nonlinear driven oscillators (Morse and lngard  (1986)”; Parlitz

et al. ( 1992)s1 ). This is the f~st observation of such a phenomencm  in a free oscillating

drop. What is unique and unexplained, however, is the observation that the crossing of the

saddle-node boundary on the downsweep is either preceded or is simultaneous with a

shape instability. As the bifurcation frequency is approached from above, and at the

maximum prolate phase of the clscillation,  a wobbling motion of the drop with respect to

the axis of symmetry is observed. After no more than a few cycles of the 1=2 oscillation,

the amplitude drop precipitously to the original non-resonant value.

This hysteresis cannof be observed with water because coupling to three-

dimensional modes prohibits any significant increase in the axisymmetric  mode amplitude.

Further, hysteresis cannot be observed when the acoustic force modulation is used to

induce shape oscillations in the absence of an electric field. When a steady (DC) electric

field is present, however, acoustic force modulation will allow the observation of

hysteresis. The elecrnc field thus appears to exert a stabilizing action on the large amplitude

shape oscillations.

3.3.3. Soft Nonlinearity in the Resonant Oscillations

In view of the evidence described in the preceding paragraph, it should not be

surprising to find that the resonance frequency of driven fundamental mode shape

oscillations decreases as the amplitude increases. This has been theoretically predicted

8’gIl lSIS and experimentally verified for immiscible liquid systems14 and falling liquid

drops in a gasls  . Recent results from a Space Shuttle-based experiment carried out in

microgravity also support the existence of a soft nonlinearity with quadratic dependence on

the oscillation amplitude for freely decaying drop shape oscillationss2. We report here

corroborating data for both driven and freely decaying shape oscillations of droplets

levitated in air and at 1 G. The shape oscillations have been driven by the time-varying

electric field. Although these results are for non-spherical uncharged drops, they are of

more practical use to ground-based dynamic methods for surface tension and viscosity

measurements using the levitation approach.
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Driven oscillation data are more difficult to analyze because of the steady-state drop

deformation which is generated together with the time-varying oscillatory motion (Feng

and Beard, 1991 a)28. Since steady-state drop distortion has also been shown to alter the

resonant mode frequencies, observed shifts in these frequencies are the results of the

combined effects due to nonlinearity and static shape distortion. In these particular

experiments, the ultrasonically levitated droplet already has an oblate equilibrium shape,

and the steady-state shape-distorting contribution of the time-varying electric field will tend

to drive it into a more spherical shape. The net, experimentally observed effect has been a

consistent lowering of the resonance frequency of the axisymmetric fundamental mode

(/=2, k=o) of shape oscillations for increasing displacement amplitucle. Figure 11 describes

experimental results obtained for a water-glycerol mixture where the drop oscillatory

response recorded by the optical detector has been plotted as a function of the electric field

frequency for different field strengths. The frequency shift can be measured through the

determination of the change in peak frequency (figure 11a), or by the change in frequency

for 90 degrees phase shift at resonance (figure 11 b). Both methods yield similar results

(within 2%). The composite plot in figure 1 lC graphically demonstrates the soft

nonlinearity for driven oscillations. The second peak found at the highest electric field drive

reflects the excitation of the “running wave” mcde previously described.

Quantitatively similar results are obtained when the acoustic force modulation drive

is used to excite the shape oscillations. In this case, because the static distortion associated

with the oscillatory drop response results in a more obklte shape, one can conclude that the

contribution from the static deformation is minor compared to the purely nonlinear aspects

of the oscillations.

The results depicted in figure 1 lC have been gathered over a 9 minutes time period.

Appreciable drop evaporation takes place over such a time frame, and a correction via

normalization has been folded into the analysis of the results. In view of all these

experimental complications, we have preferred to rely on the free-decay dynamics for

frequency shift measurements. In this approach, drop shape oscillations are f~st driven at

an experimentally determined resonance frequency, and the frequency of the free-decay

phase after the excitation drive has been terminated. A functional fit to the damped

oscillations allows the empirical measurement for the frequency and damping time-

constant. The frequency obtained by a fit at the high amplitude portion of the decay trace

can be compared to the equivalent measure obtained at the late portion of the decay phase
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where low amplitude oscillations take place. Under these conditions, both the effects of

static deformation and evaporation can be virtually eliminated, and a large data sample can

be acquired over a very short time.

Direct measurements of the time-dependent drop shape have been gathered through

the analysis of digitized video images obtained at high frame rate (2,000 frames per

second). The backlit drop contours were analyzed using the standard spherical harmonics

expansion, and the cl (t) coefficients (see equation 5) were determined for 1=2 to 1=6 for

axisymrnetric oscillations. Figure 12 is a sample of the resulting plot for the c2(t)

coefficient obtained from the decay of a 3 mm diameter drop initially driven at resonance.

A functional fit involving an exponentially decaying sinusoidal time dependence optimized

for the large amplitude portion is shown on the graph, emphasizing the increase in the

characteristic decay frequency at low amplitude. A measurement of the oscillation

amplitude from the digitized images, and a functional fit at the lower amplitude end provide

the necessary information to determine the frequency shift as a function of oscillation

amplitude. Such an experimental Iy determined dependence is displayed in figure 13 where

the percent relative frequency shift 02 (t=~)-m2 (t=O)  / w (t= ’c) (where t is the

experimental elapsed time after which the fit to the low amplitude oscillation is initiated) is

plotted as a function of the oscillation amplitude normalized to the equatorial radius of the

quiescent levitated oblate  drop. Qualitative agreement with previous experimental resuits  in

liquid-liquid immiscible systems14 can be observed, but a quantitative corroboration of the

available theoretical predictions cannot be obtained. This is not surprising due to the

constraints imposed by both the ultrasonic and electric fields.

3.3.4. Sub-Harmonic Driven Resonances

Driven shape oscillation resonances are usually observed when the frequency of the

time-varying stimulus coincides with the appropriate resonance frequencies. When the

magnitude of the time-varying driving force is high enough, however, a secondary sub-

harmonic resonance can also be obtained where the driving frequency is twice the

resonance frequency. In this particulm work, we have observed sub-harmonic response

when the ultrasonic modulation frequency cqn = 2 6)” , or when the time-varying electric

field frequency CO. = co” , where O* is the frequency of the obsenwd resonance. We report

here results for the sub-harmonic excitation of the 1=2 and 1=3 modes.
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When the electric field frequency o. has a value nearly equal to the fundamental

quadruple mode m, the actual electrically-driven time-varying distortion has a frequency

equal to 2c0e which is close to that of the 1=3 resonance mode, 6)3 . Under ideal

circumstances and when the amplitude of the drive is sufficiently high, both these modes

should be excited : the 1=2 mcde through a secondary and the 1=3 mode through a primary

resonance. In actual experimental situations, however, the ability to drive asymmetrical

modes such as 1=3 oscillations depends on both geometrical factors as well as on their

damping characteristics. For highly symmetrical levitator configurations, it is not possible

to directly excite large amplitude 1=3 oscillations because the subharmonic 1=2 secondary

resonance takes precedence. It is possible, however, to induce the three-lobed f= 3

oscillations through the secondruy  resonance path by setting tie= @ .

Figure 14 describes results of experiments on driven and free-decay of sub-

harmonically driven fundamental quadruple oscillations using a 3 mm diameter droplet of

water-glycerol mixture. The varic)us Legendre  coefficients c1 (r) obtained from the digitized

video drop images, are plotted on the same scale as functions of time (figure 14a). The

calculated volume has also been plotted, and the reccmded fluctuations of less than 1 %

confh-m  that the oscillations are essentially axisymmetric. In this particular example Q =

6)2 = 439.6 rad/sec  (or 70 Hz). Figure 14b displays the FFI’ of these time-series traces,

and shows the drive frequent y peak at 140 Hz and the generated sub-harmonic drop

response at 70 Hz. In this case, not only is the /=3 mode directly excited at @ , but much

higher amplitude 1=2 oscillations also appear at w. The higher order coefficients C4 (t), cj

(1), and cd (1), also show non-zero values, but they oscillate mainly at the fundamental

frequency oz. This is in agreement with the theoretical result from Feng and Beard

(1990) 28, predicting that the description of the oscillatory response at each frequency

involves several Legendre polynomials.

The sudden decrease of the zero amplitude line in the C2 (t) plot is a manifestation of

the steady shape deformation associated with the electrically-driven oscillations. Because a

high electric field amplitude is required to drive a sub-harmonic response the drop is

statically deformed into a more prolate shape; this is reflected by an increase in the cz (t)

value of the zero amplitude line during the driven oscillations phase. As the AC electric

field is shut-off, thus eliminating this static shape deformation, the free-decay phase is

initiated and the zero-amplitude line shifts to a more negative C2 value corresponding to a

more oblate  equilibrium shape.
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3.4 Resonant Modes Coupling

We present here experimental results c)btained from the analysis of digitized high-

speed video images of oscillating drops in both the steady-state driven as well as free-decay

modes. In a typical experimental sequence, the drop is first excited into resonant

oscillations of the appropriate mode number through either direct or sub-harmonic drive.

The shape oscillation drive mechanism is then abruptly terminated, and the free-decay

phase is recorded with a high-speed video camera at 2,000 frames per second (4,000 fps

for higher mode number oscillations such as /=4).  Two options are available when shutting

off the oscillation drive: the time-varying electric field can be set to zero, or its frequency

can be abruptly increased to a high frequency outside of the drop response frequency range

(i.e. 500 Hz). The first approach allows the obsemation of both oscillatory motion as well

as of the steady-state deformation induced by the time-varying electric field drive. The

second option permits the measurement of the free-decay of the oscillatory motion alone as

the steady-state deformation is still induced by the higher frequency AC electric field. A

corollary situation exists in the case associated with modulated acoustic radiation pressure.

The principaJ  results are :

(1) The profiles associated with each resonant axisymmetric  mode driven at a

sing le frequent y are described by several Legenclrc  coefficients of different orders,

implying that the dynamic shapes of large amplitude resonant oscillations are characterized

by a combination of multiple Legendre  shapes.

(2) In general, even-numbered modes do not easily couple to the odd-numbered

oscillations, while odd-numbered driven modes can excite even-numbered mode shapes.

(3) Very little energy is transfered to higher modes (at their respective resonant

frequencies), and this weak mode coupling is significantly hampered by viscous

dissipation.

(4) Energy transfer to lower modes and to non-axisymmetric motion is much more

prevalent for both driven and free-decaying oscillations.
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(5) The freedecay  phase of initiallY oscillating, electrically driven droplets is greatly

influenced by the precursor oscillation mode shape and frequency: the characteristic

frequency of each Legendre coefficient is dominated by the initial conditions, and the

natural modal free oscillations are superposed on the decay of the initial forced oscillations.

Figures 14a and 14b describe an example of a case when the fundamental

quadruple resonance is initially driven sub-harmonically (the electric force frequency is

twice the drop response frequency, i.e. (I)e = coz ). A noticeable. 1=3 response can be

measurtxl  due to direct excitation at 140 Hz, but a much larger 1=4 response is detected at

the /=2 mode frequency of 70 Hz. Much smaller contributions from the 1=5 and 1=6

components can also be detected, and their primary frequency comj)onents  are CDS and m

respectively. In this particular case, even though the large amplitude oscillations are those

of an even-numbered mode, odd-numbered modes are also excited because of the presence

of the os frequency component in the drive mechanism. Very little energy transfer to

higher normal modes at their natural frequencies is detected at this oscillation amplitude

(about 20% of the equivalent spherical diameter). Even in the free-decay phase, the

frequency of oscillation of the higher order coefficients cd and cc is rhe same as that of the

fundamental mode C2 . Only at the end of the free-decay phase can the characteristic

frequency (3~) of the /=4 mode be detected, as shown in figure 1 S where both the time

variations of the C2 and C4 coefficients are plotted.

The separation of the odd and even-numbered oscillations is even more apparent

when the quadruple drop oscillations are directly excited by the time-varying electric field

(i.e. co. = (1)2/2). This case is illustrated in figure 16a and b where both the time-series

and FFfs for the fmt five Legendre coefficien~s are plo[ted using the. same scale. The large

amplitude 1=2 oscillations generate significant 1=4 and /=6 responses at the same frequency

of 60 Hz, but 1=3 and 1=5 oscillations are barely measuy  able. A more symmetrical shape of

the decay curve envelope for the fundamental mode reflects a lower voltage required to

drive a primary resonance and consequently a smatler static shape distortion associated

with the time-varying electric force. The very asymmetrical oscillations of the higher order

Legendre coefficients probably reflect the asymmetry of the electric field drive which is

biased towards the elongation of the drop in the vertical direction. ‘Ihe fluctuations in the

calculated volume are caused by deviations from axial symmetry due. to probable coupling

with three-dimensional resonant modes at large amplitude oscillations. As in the previous

case, virtually no evidence of coupling to the higher resonance rnodcs  could be obtajned,

although the FITs of the 1–4 and /=6 coefficients bo(h reveal an unexplained harmonic
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component at 120 Hz. Also note that the decay constant is the same for all the Legendre

coefficients, strongly suggesting the existence of a single mode.

Fairly large amplitude oscillations of the 1=4 resonant modes can be observed when

low viscosity liquids such as water are used. Figure 17 presents the time series of the

Legendre coefficients of a levitated water drop initially driven in the third resonant shape

mode. In this case both higher and lower mode number synchronous oscillations are

detected in the driven phase. Because relatively high electric field intensities are required to

drive the higher, more damped modes, a substantial static shape distortion accompanies the

time-dependent shape oscillations. Definite coupling to the fundamental mode in the free-

decay phase is revealed by the time variations of the C2 coefficient where a lower frequency

component immediately appears upon termination of the electric field drive. These results

can be compared with Basaran’s predictionslb based on the numerical simulation of the

decay process of a drop initially distorted in a static shape based on a Legendre coefficient

c4=0.3 for a liquid drop with a Reynolds number Rc.=1OO ( Re== I/v (oR /p)l’2 ). The

experimental findings are for Re=360, the drop is initially oscillating, and the decay trace

envelope is asymmetrical. The essential features, however, are consistent with the

numerical simulation results except that the 1=4 frequency component is absent from the

theoretically derived time variations of the 1=6 and higher coefficients. Experimental results

also show noticeable 1=3 and 1=5 components synchronous with the 1=4 driven

oscillations.

A similar experiment was also performed in low gravity during a Space Shuttle

flight by one the authors (EHT). A rotating drop of water was acoustically positioned in

air, and modulation of the acoustic radiation pressure was used to drive it into steady-state

1=4 resonant shape oscillations prior to observing a free-decay phase obtained by turning

off the amplitude modulation of the positioning sound field. The video-recorded sequence

has been analyzed, and the results are presented in figure 18. The space-based data show

negligible contribution from the odd-numbered coefficients, and confirm the coupling to

the lower frequency fundamental mode. The dominance of the fundamental natural mode,

however, is immediate upon initiation of the free-decay phase. Synchronous oscillations of

the cz and cIj coefficients similar to the ground-based results are also obtained. The

modulation of the fundamental mode oscillations (observed in the C2 and volume plots) is

caused by the onset of three-dimensional modes as the constraining amplitude modulation

of the sound field is turned off. Figure 19 presents results for a drop in low gravity

oscillating about an oblate shape and driven by modulated acoustic radiation pressure.
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These results have been obtained from 16 mm cinefflm records which are more dificult to

digitally analyze, but they am very similar to those presented in figure 17 for a droplet

levitated on the ground and driven into oscillations by a time-varying ekmric field.

4. DISCUSSION AND SUMMARY

The principal objective c)f this experimental investigation was to carry out specific

quantitative observations of the dynamic response of free drops levitated in the Earth

gravitational field. The motivation was to study the nonlinear aspects of these motions

within the framework of an already substantial body of analytical and numerical

predictions, but also to better assess the influence of ultrasonic and elecrnc fields on these

phenomena in order to effectively exploit the capabilities of single fluid particle levitation

techniques for various Earth-based as well as low-gravity applications. In view of the

evidence uncovered thus far, we are comforted by the fact that theoretical predictions have

been shown to be consistent with most of our findings when the experimental conditions

closely approximate the theoretical constraints. On the other hand, we have also

determined that both acoustic radiation pressure and electric field stresses and free charges

significantly mcdify  the dynamic response of free drops. Although a general theoretical

framework for the analysis of the isolated static effects c)f acoustic and electric fields exists,

a detailed analytical or numerical study of all the relevant factors influencing the behavior of

a levitated drop in 1 g is not yet available.

Measurements of the static deformation of levitated drops under the combined

action of acoustic radiation and electric field stresses have been cat-rid  out for the first time

as a first application of the hybrid levitation technique. ‘Ile opposite actions of the acoustic

(oblate-biased)  and electric (prolate-biased) forces have been shown to allow the

continuous controlled shaping of the drop. No theory combining both field effects is

currently available.

The static oblate deformation associated with ultrasonic levitation of liquid drops

has been determined to induce a decrease in the resonance frequency of driven quadruple

small amplitude shape oscillations. This fact had already been established by prior

experimental studies for substantially deformed levitated drops in 1 gsQ, but recent low

gravity measurements have confirmed this decrease for slightly deformed droplets. ‘I’his

has a significant impact on those ground-based methods of surface tension measurement
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relying on the determination of the resonance frequency of oscillating drops. In the

presence of a static electric field, this frequency has also been shown to significantly

decrease, even for spherical drops. The presence of a net surface free charge was also

shown to accentuate the lowering of the frequency. The experimental results we have

described in this paper, however, concern ultrasonically levitated charged and uncharged

droplets under the influence of a static electric field. Although the outcome of this study is

in qualitative agreement with available theoretical predictions, a detailed analysis of the

results requires the assessment of the effects of both the static oblate  deformation as well as

of the ultrasonic restoring force.

The decoupling of the non-axisymmetric quadruple modes from the usual oblate-

prolate axisymmetric oscillations has been experimentally verified for oblate  ultrasonically

levitated drops. Three isolated resonances with characteristic oscillatory motions can be

identified for low viscosity liquids, but increasing the viscosity gradually results in the

eventual merging of these peaks into a broader resonance curve. The presence of a static

electric field shifts the resonance frequency of two of the modes downwards (1=2, k=O and

1=2, k=l ), but the last mode (1=2, k=2) frequency is rai seal, as predicted by a theory based

on asymptotic expansion2g  , At large oscillation amplitude, coupling, between these closely

spaced modes takes place and this generally leads tc) seemingly three-dimensional and

temporally complex oscillations. Under the excitation due to a time-varying electric field

hysteresis can be observed for the oblate-prolate  mode which is driven to very large

amplitude before a surface instability abruptly and dramatically decreases the high

amplitude driven response. This hysteresis effect cannot be observed when the drop

oscillations are excited by modulated acoustic radiation pressure, although in this case, the

presence of a slatic  electric field will bring it back.

Sub-harmonic excitation of shape oscillaticm triodes has been observed when the

frequency of the time-valying  stimulus is twice the relevant resonance frequency. This

secondary resonance phenomenon has also been theoretically predicted28 , and it allows the

indirect excitation of resonant modes not driven through the standard primary resonance.

For example, asymmetric, odd-numbered resonant modes such as the /=3 oscillations can

only be driven to substantial amplitude through the secondary resonance route.

Even at fairly large amplitude shape oscillations, very little energy is transferred

from lower-order modes to higher-order resonances. When axisymmetric  shape

oscillations are decomposed into their linear components represented by the Legendre
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polynomials, driven resonant oscillations at a single frequency are described by several

time-varying Legendre coefficients. Even in the free-decay region, the time dependence of

the f~st few Legendm coefficients is dominated by the driven oscillations. When a higher-

order mode is driven and subsequently turned off, coupling to lower order modes can be

observed at their natural frequency, suggesting that viscous dissipation is the primary

influence in the mode coupling process, Microgravity experimental mults obtained with

droplets positioned in air by acoustic radiation force are very similar to the ground-based

data, suggesting that high intensity ultrasonic and electric fields modify the observed drop

dynamics quantitatively, but not qualitatively.
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FIGURE CAPTIONS

Figure 1.

Schematic description of the experimental apparatus. A drop is shown freely suspended

between the driver and reflector of a single axis ultrasonic levitator. A high voltage

amplifier driven by a low frequency (DC to 1 kHz) function generator is connected to the

reflector, and generates the DC and AC high voltages. The drop motion is recorded by a

ccd video camera connected to a recorder and to a microprocessor with a real-time 30 fps

frame grabber. For high frame rate application, the ccd camera is replaced by a Kodak Spin

Physics high speed camem and recording system. The drop shape can also be monitored

by projecting the shadow of the levitated back-illuminated drop onto a photo-detector. The

output of this photo-detector is amplified and fed into a digital oscilloscope and spectrum

analyzer.

Figure 2.

Photographs of a

undergoing large

sequence of shapes captured using strobed illumination. The drop is

amplitude driven quadruple (1=2, k=O) shape oscillations. Typical

fundamental mode oscillation frequencies range between 50 and 100 Hz for the sizes and

liquids used in this study.

Figure 3.

Plots of the measured aspect ratio a/b of a levitated water-glycerol drop as a function of the

value of the static electric field and for three different fixed sound pressure levels. The drop

profile is initially oblate in the absence of any electric field due to the ultrasonic radiation

stresses. The action of a DC (static) electric field is to reduce the drop aspect ratio, i.e. to

force the drop shape into a more spherical shape. For the acoustic levels used in this

example, even high electric field strength up to breakdown value did not force the drop

back into an ideal spherical geometry (ah= l.0).

Figure 4.

Photographs of a sequence of static drop shapes for a fixed ultrasonic pressure and

increasing DC electric field strength (from 1 to 10 kV/cm). For a large enough drop,

prolate shapes can be obtained within the allowable electric field strength. A noticeable

asymmetry can be observed at the high end of the electric field values.
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Figure 5.

Plot of the results of measurements of the shift in the driven quadruple (/=2, k=O)

resonance frequency as a function of the drop static oblate distortion (expressed by the

aspect ratio ah). These results were obtained during short-duration periods of low gravity,

and they are strictly relative measurements. Each data point corresponds to two consecutive

measurements: one at a/b near 1.0 and another one at a relevant higher value of the aspect

ratio.

Figure 6.

Plot of the results of measurements of the shift in the driven quadruple resonance

frequency as a function of the normalized DC electric field strength for both charged and

uncharged drops. The continuous curve through the data points are third-order polynomial

fits. For a given DC field strength, a higher free surface charge results in a greater decrease

in the resonant frequency.

Figure 7.

Photographs obtained under strobed  illumination of the first three driven resonant modes

of shape oscillations of an ultrasonically levitated drop. These large amplitude oscillations

have been obtained for water droplets using ultrasonic radiation pressure modulation.

Figure 8.

Schematic description of the distribution of the three-dimensional decoupled fundamental

resonant modes. For low viscosity liquids such as water three distinct resonances can be

identified with characteristic oscillations. For higher viscosity liquids (~ >3 cP), only two

main resonances can be located. The first resonance is broad and contains the three modes

which can be individually excited with careful tuning. The second resonance is an oblate-

prolate oscillation superposed on a running wave.

Figure 9.

Photographs of single video frames recorded at 30 fps showing the morphologies of the

various three-dimensional 1=2 oscillation modes. a : Axisymmetric  1==2,  k=o oscillations; b:

1=2, k=l oscillations, c: 1=2,, k=2 oscillations; d: oblate-prolate  and running wave mode.
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Figure 10.

Plot of the photo-detector response as a function of the time-varying electric field frequency

exhibiting hysteresis. The sub-harmonic response at f of the 1==2 mode was monitored with

a lock-in amplifier. During the frequency upsweep, the response amplitude suddenly

increases at 66-67 Hz. Dwing  the downsweep, the amplitude continues to increase until it

abruptly drops at about 57 Hz, where it attains the original value. This sudden decrease is

preceded by the onset of shape instability.

Figure 11.

Plots of the photo-detector responses as functions of the time-varying E Field frequency

for different E field magnitudes. The 1=2 mode response at 2f was measured with a lock-in

amplifier. (a): Drop oscillation amplitude for two different E field values. The shift in the

maxima gives a measure of the resonance frequency shift. (b) Phase of the drop oscillation

with respect to the driving E-field as a function of the E-field frequency at two different E-

field values. The resonance frequency shift is measured where the curves cross the 9@’ line.

(c) Same as (a) for five E-field values. The second peak at E=6.05 kV/cm is due to the

excitation of the running wave mode at large oscillation amplitude.

Figure 12.

Plot of the time dependent C2 (t) Legendre coefficient obtained from the analysis of

digitized high-speed video recordings of the free-decay phase of a 3mm diameter water-

glycerol drop. The continuous line is a fit of the data using an exponentially decaying

sinusoidal time dependence optimized for frequency match at large amplitude oscillations.

The shift in the resonance frequency is clearly demonstrated by the increasing mismatch

between the fit and the data at low amplitude oscillations.

Figure 13.

Plot of the free-decay relative frequency shift for the fundamental axisymrnetric  quadruple

mode as a function of the normalized amplitude. The relative frequency shift is obtained by

using the ratio of the frequency measured at the last two cycles  to the frequency measured

at the first two cycles. The normalized amplitude is talc ulated  by comparing the maximum

vertical amplitude (in the prolate shape) at first cycle with respect to the equiiibriutn static

shape of the levitated drop.
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Figure 14.

Plots of the time dependence and FITs of the first five Legendre  coefficients during

steady-state drive and free-decay phases of a sub-harmonically excited water-glycerol drop

by a time-varying electric field. (a) Amplitude of the Legendre  coefficients as a function of

time. (b) FITs of the first five Legendre coefficients. In this particular case, the electric

force oscillates at 140 Hz and the largest amplitude drop oscillatory response is at 70 Hz.

The 1=3 mode is also driven directly at 140 }Iz at smaller amplitude because it is more

highly damped and because of the slight mismatch between its resonance frequency and

the electric field drive frequency.

Figure 15.

Superposed plots of the calculated time dependence of the Legendre coefficients cz (t) and

C4 (t) at the low amplitude end of the free-decay phase of an oscillating 3 mm diameter

water droplet. As the amplitude of the entrained oscillations due to the fundamental mode

C 2 (t) decreases, higher frequency components are more apparent. In particular, a

component near triple the fundamental mode frequency begins to be more clearly defined

with decreasing fundamental mode amplitude.

Figure 16.

Time dependence (a) and FFTs (b) of the first five Legendre coefficients of a water-

glycerol drop excited into primary resonant oscillations. In this case the electric force

oscillates at 60 Hz, and the largest amplitude oscillatory response of the quadruple mode

is at 60 Hz. No odd-numbered oscillations are excited to a significant extent. The decay

trace envelope for C2 (t) is more symmetrical (cornpwed with that in figure 14a) due to a

lesser static drop distortion. The frequency component at 120 Hz, for the higher even

numbered Legendre  coefficients cannot yet be explained.

Figure 17.

Time dependence of the first five Legendre coefficients for a water droplet in the driven and

free-decay phases. The initial oscillations are in the /=4 mode, and are directly excited into

primary resonance by an electric force oscillating at 143.2 Hz. Fairly large amplitude

synchronous oscillations are detected for both 1=2 and 1=6 shapes, as well as a noticeable

1=3 component. The natural resonant oscillaticms  of the 1=2 mode appear at the end of the

decay phase.
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Figure 18.

Time dependence of a first five Legendre  coefficients for a rotating water drop acoustically

positioned in microgravity.  The 1=4 mode oscillations are initially excited by modulation of

the acoustic radiation pressure, and the free-decay phase is initiated by turning off the

amplitude modulation. The equilibrium shape of the drop is slightly oblate (CZ= -O. 15) due

to rotation and acoustic radiation stresses. The odd-numbered coefficients response is

negligible, and in contrast with the ground-based results, the dominance of the natural

frequency of the fundamental mode (/=2) is immediate upon the termination of the 1=4

mode drive.

Figure 19.

Results of the analysis of the driven and free-decay phases of a rotating drop in

microgravity and initially driven into the /=4 mode oscillations by acoustic radiation

pressure modulation. The data were obtained from 16 mm cinefihn records exposed at 400

frames/second. The noisier quality of the data stems from the non-ideal lighting

characteristics which create spurious reflections and highlights on the drop images. These

results are very similar to those obtained with droplets levitated on Earth, except for the

earlier appearance of the fundamental natural mode at the onset of free-decay.
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contains the [hrcc nlodcs which can bc individually cxcitcd  wi[h careful [uning T’t\c second rcsonancc  is an
oblatc-prolate oscillation superposed on a running wave,
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F i g u r e  10.
plot of ~he ~ho[o.dc~ec[o[ ~eSPonSc as ~ func[ion of the [i~~.v~ryi~g ~lc~[~i~ Lc)cI  ~rcqucrlcy Cx]libillng  h y s t e r e s i s ,

The sub-harmonic response at f of the 1=2 mode was monitored wilt] a lock-in ~implif]cr.  During the fmqucncy
upswecp, [he response amplitude suddenly increases at 66-67 Hz. During the [Iownsu,cc jI , [he ampli~udc con[inucs
to incrcasc  until it abruptly drops at abou[ 57 Hz,, where it attains the originul value .  l’his sudclcn dccrcasc  is
prcccdcd by the. onset of sh~pc instability.
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Figure  11.

Plots of the photo-detector responses as functions of the time-varying E Field frequency for different E field
magnitudes. The 1=2 mode response at 2f was measured with a lock-in amplifier. (a): Drop oscillation amplitude
for two different E field values. I’hc shift in the maxima gives a mc.isurc of the rcso!lancc frequency shift. (b)
Phase of the drop oscillation with respccl  to the driving E-field as a function of [hc F.-field frequency at two
different E-field values. The rcsommce  frequency shift is measured where [hc curve: cr[)ss Ihc 90° line. (c) Same
as (a) for five E-field values. The second peak at E=6.05 kV/cnl is duc [o [hc cxci[ation of [hc running wave mode
at large oscillation amplitude.
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Figure  12.
Plot of the time dcpcndcnt  C2 ([) Lcgcndrc cocfflcicnt  obtained from lhc analysis of digit iz.cd high-speed video

recordings of the free-decay phase of a 3mm diiinwtcr water-glycerol drop. 1 Ile cnn[inuous line is a fit of the data
using an exponentially decaying sinusoidal [imc dependence op[imiy.cd  for frequency match at large amplitude
oscillations. The shif[ in (hc resonance frequency at large mmpli[udc  is clc:irly dcrnnnstratcd  by the increasing
mismatch bctwccn  the fit and the dots at low aml~li[ude  osclllatirms.
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Figure  13.
Plot of the free-decay rc]alivc frequency shift ror the fundamental tixisymn\cLric  quadrupolc  mode as a function of
[he normalized amplitude. TIc relative frequency shift is oblainc{i by using the rolio of lhc frequency measured at
[hc last two cycles [O the frequency mcmurcd al Lhc first [WO cycles. The normalir.cd arnpli[udc is calculated by
comparing the maxin]urn vertical amplitude (in [he prolate shal~c) a[ first cycle wiltl rcspccl  10 the equilibrium

static shape of the Icvi[a[cd drop.
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I;igure  14.

[)![)[s of the [irnc dcpcnderrcc and FF’rs of [he first five Legcndrc coefficicn[s  dur ITIg  sleady-s[a[c dr ive  a n d  frcc-
dccay phases of a st]tj-h:~rn](>nically cxcilcd wa[cr-glycerol dIop t,y a tinlc.vurying  clcr[ric  field. (a) Anlpli[udc  of
the I.cgcndre  cocfficicn[s  as a func[itjn of lime, (b) FF7’s  of the (irst five LCg CTId IC c(]cfficicn[s. In [his particular
case,  the clcc[ric  force oscilliitcs at 140 Flz. and Lhc lwgcst  ampl]ludc  drol) msclllamry rcsIx~nsc  is Jt 70 }i~,,  T h e
1=3 mode is also driven directly at 140 Hz at srnallcr timpli[udc l,ccaosc it is rllorc hlgh]y dornpcd  ancl bccausc of
the sli~hl nlisn]alcb  Iwlv.fcc;l i[s rcs{)llance  frequency anti [hc clcc Lric field drik,c (rcqucncy,
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apparen[. In par[iculdr,  a component near [riplc the fundarncnlal  mode frequency begins to be more clearly
defined with decreasing fundamcn[al  mode ampli[udc.
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Figure 16.
Time dcpcndcncc  (a) and FFTs (b) of [he first five Lc~cndrc coctlcicn[s of a wa[cr-glyccrrrl drop cxcitcd  into

primary rcsonan[  oscillations. In [his CJSC [he electric force oscilla[cs  a[ 60 H7, and the Iargcst  amplitude
oscillatory rcsporrsc of Lhc qoodrupo]c mode is at 60 Hz., No odd-numbered osci]kitions arc cxcitcd to a significant
cxtcn[. I’hc dcc:ly w~cc cnvclopc  for c 2 (t) is more symmctrica]  (crrmparcd with [hal in figure 14a) duc to a

lesser static  drop distorliorr.  ‘f hc frequency componcn[ Jt 120 IIz. for the higher even numbered Legcndrc
cocfficicn(s  cano{>[  yet bc cxi)laiocd.
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Figure 17.
Tirnc dcpcndcncc  of [hc firsl five Lcgcndrc cncfficicll[s fnr a wa[cr drcq]lc[ in [hc driven und free-dcc:ty phases.
The initiol oscillations arc in Lhc /=4 mode, and urc directly cxcllcd inlo primary rcsrsnancc by an electric force

oscillating It 143.2 tiz.. Fairly Iargc Jn]pli[uclc synchronous oscillations arc dcmc[cd fnr bo[h 1=2 and 1=6 sbapcs ,

as WCI1  as a noticcahlc 1=3 cnnlponcnt. The n[mrral rcsommt oscillations of the 1, 2 mode tippcar a[ the cnd nf the
decay phase.
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I;iflure 18.

Ti’rnc  dcpcndcncc  of a first five Lcgcndre coeff ic ients  for  a  ro[ating wo[cr drt~p ticous[ic~lly posi[ioncd  in
rnicrogravi[y. I’hc 1=4 mcxlc oscillations are initially excited by r[lodulalion ot_ the acooslic rtidialiorl pressure, and
the free-decay phase is initia[cd by turning off the amplitude nlodulu[ioll.  The cqoilibriurn  shtipc of the drop is
slightly oblatc (c2= -(). 15) CIUC  to  rotation and acoustic radiation stresses. The od(l nun!hcrcd  coc KicicnLs  response
is negligible, anti in contra$t wi[h the ground-based results, [hc dominance of tlm no[ur~l I_rcqucncy of the
fundamental nlcrdc (/=2)  is irllnlcdiatc upon the tcnnina[ion  of th~ 1=4 nlodc drive.



-0.05

-0.10 1
No

-0.15

-0.20

-0.25
0 1 2 3 4 5

time (see)

0.05

0
au

-0.05

-0.1

-“.15~—r-A
o 1 2 3 4 5

time (see)

“5-1-————————1
0.1

0.05
‘eQ

o

-0.05

-0.1
0 1 2 3 4 5

time (see)

11—- ,.

1.05

1
g
> 0.95
g

0.9

0.85

“d----r--.~
o 1 2 3 4 5

time (see)

Figure  19.

Results of the analysis of  [he driven and free-decay phases of a rola[ing clrcr~)  ir] microgr:ivi[y and ini[ially driven
into the 1=4 mode oscilla[lons  by acoustic radia[ion pressure modal a[ion. 1 hc clu~a were ob[oincd  from 16 mm
cinchlm  records exposed a[ 400” fr~nws/second. The noisier qu:ility of [he dala ~[cnls from the non-ideal lighting
charac[cris[ics  which crca[e spurious reflections and highlights on [IIC dlc]~~ IrI\agcs. I’hcsc ICSUll\ ~rc very sin]llar
[O [hose o b t a i n e d  wi[ll dropic[s Icvi[a[ed on Ear[h, exccp[ for [hc corlicr ap}w.i[,lnrc ()( [I]c f(!rldarncn[al nalural
rnodc ar the onscl  nf free.dcc;iy.


